If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6^3-5b^2-4b+20=0
We add all the numbers together, and all the variables
-5b^2-4b+236=0
a = -5; b = -4; c = +236;
Δ = b2-4ac
Δ = -42-4·(-5)·236
Δ = 4736
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4736}=\sqrt{64*74}=\sqrt{64}*\sqrt{74}=8\sqrt{74}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-8\sqrt{74}}{2*-5}=\frac{4-8\sqrt{74}}{-10} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+8\sqrt{74}}{2*-5}=\frac{4+8\sqrt{74}}{-10} $
| 12y-4=3y+77 | | -3(v+4)=3v-27 | | 5(z+1)=3(z+2)=11 | | 4(k-6)=6(‘+2) | | 10x=2x+33 | | 5x-15+2x+21=108 | | 4/5=2.4/x | | 7/5=(a+9)/(a-5) | | 7x+3x+9x-19X+5x+8x+111x+128=180 | | -2x+10x-10x=-8 | | 2x8+4=14 | | -s-10s+9s+5s+3s=18 | | (9x-31)=(43) | | 50-2x=30+3x | | 2x5+4=14 | | 49s-10=52s-94 | | (6x+25)=(16-3x) | | 19j-8j-3j-6j=12 | | 2x-7+4=14 | | 38e+1-36e=13 | | -2d+22=100 | | (2x+1)=(5x-44) | | 7+8n=71 | | (2x+1)=(5x-44 | | w/3-4=4 | | 8^(3x+2)=1/16 | | h/4-4=5 | | 7(f-78)=91 | | (3x+14)=(7x-10) | | -h-18h+-7h+17h=9 | | 20-2g=2 | | 4(6g-7)-(3g-5)=40 |